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1 Tangent Lines and Planes of Parametrized
Surfaces



Tangent Planes and Normal Vectors

Let S be a surface parametrized by G(u, v). Then G, (2. b) and G, (a, b)
are tangent to the grid curves, thus span the tangent plane to S at P.

v

Curve G(a, v

Curve G(u, b)

Normal vector: N(a, b) = +G,(a, b) x G,(a, b)

Unit normal vector: f(a, b) = I\EE?Z;H

o The parametrization G is regular if i is well-defined (N £0 always).

@ n and —n are two unit normal vectors; choose the correct orientation.



Tangent Planes and Normal Vectors

Tangent plane parametrization: T(r,s) = G(a, b) + rG,(a, b) + sG, (a, b)
Tangent plane equation: N - ((x,y,z) — P) =0

Example 1: Find a parametrized equation and a Cartesian equation for
the tangent plane to the helicoid G(u, v) = (ucos(v), usin(v), v) at

—

G(1,0) = (1,0,0).

Solution: Gy = (cos(v), sin(v), 0) Gu(1,0) = (1, 0, 0)
Gy = (—usin(v), ucos(v), 1) G,(1,0) = (0, 1, 1)
N =G, x G, = (sin(v), — cos(v), u) N(1,0) = (0, —1, 1)

Tangent plane parametrization:
T(r,s) = (1,0,0)+r(1,0,0) +5(0,1,1) = (1 +r, s, s)
Tangent plane intrinsic equation:

0, -1,1)-((x,y,2) — (1,0,0)) =0 or —-y+z=0



2 Oriented Surfaces



Flux and Orientation: Intuition

@ Given a surface S and a vector field I_:' we want to measure the flux
(net flow of “stuff”) of F through S.

@ In order for this to make sense, we need to specify which way stuff
is flowing through S.

@ In other words, we need to choose one side of S as the “from” side
and one side as the “to" side.

@ In other words, we need an orientation for S.

@ In order to orient S at a particular point, choose one of the two unit
normal vectors (which we think of as pointing from the “from” side
to the “to" side).

@ In order to measure flux through S, we need this choice of ii to be
consistent for all points!



Precise Definition of Orientation

If it is possible to choose a unit normal vector ii at every point so that i
varies continuously over a surface S, then S is called an orientable
surface and the choice of i gives an orientation for S.
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Any regular parametrization G(u, v) of an orientable surface
automatically provides an orientation:
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Not all surfaces can be oriented! The Mabius strip is a surface which
has only one side, and is thus not orientable.

If an ant were to crawl along the Mdbius strip starting at a point P, it
would be upside down when it got back to P.
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The Mobius strip can be parametrized as

—

G(r,0) = (x(r,0),y(r,0),2(r,0)), where
x =4cos(f) +rcos(6/2) —-1<r<1
y =4sin(0) + rcos(6/2) 0<6<2r
z =rsin(6/2)

and it turns out (check for yourself!) that

G(-1,0) = G(1,27)

but

— —

N(-1,0) = —N(1,2r).



Closed Surfaces
A closed surface is the boundary of a solid region (e.g., spheres,
ellipsoids, tori). Closed surfaces are always orientable (outward or
inward).

Outward Orientation Inward Orientation

Example 2: The parametrization G((b,@) of the unit sphere using
spherical coordinates has outward orientation.

G(¢, 0) = (sin(¢) cos(), sin(¢)sin(6), cos(¢))
Gy x Go = (sin?(¢) cos(0), sin®(¢)sin(0), sin(¢) cos())
= sin(¢) G(¢. 0)



Vector Surface Integrals

Let S be an oriented surface with
normal vector f, and let F be a
vector field.

Normal
Component

= . of F
The normal component of F with 2

respect to S is F-f.

This is a scalar-valued function on S
that measures the extent to which F
is flowing through S in the direction
of n.

The vector surface integral of F over S is

//ﬁ.dgz//ﬁ.ads.
S S




3 Vector Surface Integrals and Flux



Vector Surface Integrals

If F is a continuous vector field defined on an oriented surface S with
unit normal vector i, then the vector surface integral of F over S is

//ﬁ-d§://ﬁ-ﬁds
S S

The integral is also called the flux of F across S.

If S has a regular parametrization G(u, v) over R, then

e +dibaENjknel
:// F(G(u,v))-mHGuvaH dA

_ //Rﬁ(é(u, v)) - (£G, x é\,)dA



Vector Surface Integrals: Example

Example 3: Find the flux of F(x, y, z) = (0, yz, z%) outward through the
surface y? + z2 = 4, z > 0 between the planes x = 0 and x = 1.

Solution: The surface S is a
half-cylinder, parametrized as
G(x,0) = (x,2sin(8), 2 cos(A))

for x € [0,1], 8 € [-7/2,7/2].

N = G, x Gy = (1,0,0) x (0, 2 cos(f), —2sin(0)) = (0, 2sin(A), 2 cos(d))

Important Note: The orientation is outward (as intended), since

N, = 2cos(f) > 0 for 0 € [—g, g}



Example 3 (cont’d):  F(x,y,z) = (0,yz,2%) and
G(x,0) = (x, 2sin(0), 2 cos(h)) for (x,0) € [0,1] x [-7/2,7/2].

—

F (é(x, 0)) = (0, 4sin(#) cos(f), 4 cos*(6))
N = (0, 2sin(6), 2 cos(f))

By the formula for vector surface integrals,
// F.dS // -N dA

=38 /W/2 /1 sin®(6) cos(f) + cos*(6) dx df

7/2J0

cos(0)(sin2(0)+cos2(0))

/2
= 8/ cos(6) df = 16.
—7/2


https://mediahub.ku.edu/media/t/1_hxybrz31

Example 4: Find the flux of the vector field ’55,?‘

F(x,y,2) = (z,y, x) across the unit sphere (Tj‘ t--‘ y
x? +y? + z* = 1, oriented outward.

Solution: Parametrize the unit sphere as usual:

G(o,0) = (sin(¢) cos(h), sin(¢)sin(6), cos(¢)) = it ¢ € 10,7, 6 €[0,2n]
sin(¢)n

x Go = <sin2(¢) cos(8), sin®(¢)sin(f), sin(¢) cos())
F(G(9,0)) = (cos(¢), sin(¢)sin(8), sin(¢) cos(6))

Then compute the vector surface integral:

//Sﬁ-ds // G¢><G9

= /0« /0 ’ [25in% () cos(¢) cos(0) + sin®(¢) sin>(0)] d6 deb

0
P 27 2 T
Y A J d6 l}% in*(6)do = T
/0 sin“(¢) cos(¢) QSWJr 5 /0 sin®(¢) d¢ 3

(1)
>


https://mediahub.ku.edu/media/t/1_913ks954

Fluid Flux

If F represents the velocity field of a fluid, then the flow rate across an
oriented surface S is the vector surface integral

//ﬁ.dg.
S

2 = length |
Units = (units of F) x (units of dS) = L o ey = E

time time

Surface S of area A.
Surface S of area A

Vo
viewed from side. ™~ /l Vo
2 ’
/ / _
/‘ /‘ N: Normal vector
/‘/ /‘/‘ of length A.
/



Example: Fluid Flux (Finding the Orientation!)
Example 5: A fluid flows with velocity
ﬁ(x,y7z) = (z,y,x) m/s, where x,y, z are Z
measured in meters. Find the rate of flow outward
through the cylinder S defined by x? + y? = 4 for
0<z< 1

Solution: First, parametrize the cylinder:

—

G(z,0) = (2cos(h), 2sin(h), z) R: 6el0,2n], z€[0,1]
G, x Gy = (0,0,1) x (—2sin(6), 2cos(h), 0)
= (—2cos(f), —2sin(0), 0)

—2n

Note that G is oriented inward from S. To fix this, just flip the sign of N.

//S,é.dg ://R<z,2sin(9),2cos(9))-<2cos(9),25in(0), 0) dA

N=2#

27T 1 "
= / / 2z cos(0) + 4sin*(0) dz df = 4xm’/s.
o Jo


https://mediahub.ku.edu/media/t/1_f8cmrm0a

Example 6: Let S be the surface consisting
of the paraboloid y = x> + 2%, y < 1 and
the disk x> + z2 <1, y = 1, oriented
outward. Find the flux of

F(x,y,z) = (0,y, —z) through S.

Solution: Call the paraboloid P and the disk O. Both can be
parametrized over the domain R given by 0 < u<1,0<v < 27.

Parametrization of P: Parametrization of Q:

G(u,v) = (ucos(v), u?, usin(v)) H(u, v) = (ucos(v), 1, usin(v))

—

Gy x G, = (2u? cos(v), —u, 2u®sin(v))  H, x H, = (0, —u, 0)

An outward normal to S should have negative y-coordinate on P and
positive y-coordinate on Q. Therefore, the normal vectors we want are

Np:éuXév NQ:*QUXHV



Example 6 (continued):

G(u,v) = (ucos(v), u?, usin(v))
i

(G(u.v)) = (0, u?, —usin(v))
(u.v) = (ucos(v), u?, usin(v)) F(H

F )
F(H(u,v)) = (0, 1, —usin(v))

Recall that the normal vectors are

Np = (2u? cos(v), —u, 2u?sin(v)) No = (0, u, 0)
So the flux is
//ﬁ.d§=//ﬁ-d§+// F.dS
s
// )-Np + F(H(u, v)) - Ng dA

27 1
:/ / (—u® —2u3sin*(v) + u) dudv =0
o Jo



4 Summary, Comparing the Integrals



Summary: Types of Integrals
Let f be a scalar function and F a vector field.

Scalar Line Integral along a curve C parametrized by r(t) on [a, b].

/fds—/ £7() [7/(2)]] dt

Vector Line Integral along an oriented curve C:

/(jl?~dF:/abl?(F(t))'F’(t)dt

Scalar Surface Integral over a surface S parametrized by G(u, v) on R:

//de // ) 11Gy x .| dA

Vector Surface Integral over an oriented surface S:

//ﬁ §:// 1) (£6. x G,) oa


https://mediahub.ku.edu/media/t/1_rr2w9bna
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