Section 16.5

Surface Integrals of Vector Fields

Tangent Lines and Planes of Parametrized Surfaces **Oriented** Surfaces Vector Surface Integrals and Flux Intuition and Formula Examples, A Cylindrical Surface Examples, A Spherical Surface Fluid Flux. Intuition Examples, A Cylindrical Surface, Finding Orientation Examples, Surface of A Paraboloid Summary, Comparing the Integrals

1 Tangent Lines and Planes of Parametrized Surfaces

by Joseph Phillip Brennan Jila Niknejad

Tangent Planes and Normal Vectors

Let S be a surface parametrized by $\vec{G}(u, v)$. Then $\vec{G}_u(a, b)$ and $\vec{G}_v(a, b)$ are tangent to the grid curves, thus span the tangent plane to S at P.

Normal vector: $\vec{N}(a, b) = \pm \vec{G}_u(a, b) \times \vec{G}_v(a, b)$ Unit normal vector: $\vec{n}(a, b) = \frac{\vec{N}(a, b)}{\|\vec{N}(a, b)\|}$

- The parametrization \vec{G} is regular if \vec{n} is well-defined ($\vec{N} \neq \vec{0}$ always).
- \vec{n} and $-\vec{n}$ are two unit normal vectors; choose the correct orientation.

Tangent Planes and Normal Vectors

Tangent plane parametrization: $\vec{T}(r,s) = \vec{G}(a,b) + r\vec{G}_u(a,b) + s\vec{G}_v(a,b)$ Tangent plane equation: $\vec{N} \cdot ((x,y,z) - P) = 0$

Example 1: Find a parametrized equation and a Cartesian equation for the tangent plane to the helicoid $\vec{G}(u, v) = \langle u \cos(v), u \sin(v), v \rangle$ at $\vec{G}(1,0) = \langle 1,0,0 \rangle$.

$$\begin{array}{ll} \underline{Solution:} & \vec{\mathsf{G}}_u = \langle \cos(v), \, \sin(v), \, 0 \rangle & \vec{\mathsf{G}}_u(1,0) = \langle 1, \, 0, \, 0 \rangle \\ & \vec{\mathsf{G}}_v = \langle -u \sin(v), \, u \cos(v), \, 1 \rangle & \vec{\mathsf{G}}_v(1,0) = \langle 0, \, 1, \, 1 \rangle \\ & \vec{\mathsf{N}} = \vec{\mathsf{G}}_u \times \vec{\mathsf{G}}_v = \langle \sin(v), \, -\cos(v), \, u \rangle & \vec{\mathsf{N}}(1,0) = \langle 0, \, -1, \, 1 \rangle \end{array}$$

Tangent plane parametrization:

$$ec{\mathcal{T}}(r,s)=(1,0,0)+r\langle 1,\,0,\,0
angle+s\langle 0,\,1,\,1
angle=\langle 1+r,\,s,\,s
angle$$

Tangent plane intrinsic equation:

$$\langle 0, -1, 1 \rangle \cdot ((x, y, z) - (1, 0, 0)) = 0$$
 or $-y + z = 0$

2 Oriented Surfaces

Joseph Phillip Brennan Jila Niknejad

Flux and Orientation: Intuition

- Given a surface S and a vector field F
 , we want to measure the flux (net flow of "stuff") of F
 through S.
- In order for this to make sense, we need to specify which way stuff is flowing through S.
- In other words, we need to choose one side of S as the "from" side and one side as the "to" side.
- In other words, we need an **orientation** for S.
- In order to orient *S* at a particular point, choose one of the two unit normal vectors (which we think of as pointing from the "from" side to the "to" side).
- In order to measure flux through S, we need this choice of \vec{n} to be consistent for all points!

Precise Definition of Orientation

If it is possible to choose a unit normal vector \vec{n} at every point so that \vec{n} varies continuously over a surface S, then S is called an **orientable** surface and the choice of \vec{n} gives an **orientation** for S.

Any regular parametrization $\vec{G}(u, v)$ of an orientable surface automatically provides an orientation:

$$\vec{n} = \frac{\pm \vec{G}_u \times \vec{G}_v}{\|\vec{G}_u \times \vec{G}_v\|}$$

Not all surfaces can be oriented! The **Möbius strip** is a surface which has **only one side**, and is thus not orientable.

If an ant were to crawl along the Möbius strip starting at a point P, it would be upside down when it got back to P.

The Möbius strip can be parametrized as $\vec{G}(r, \theta) = (x(r, \theta), y(r, \theta), z(r, \theta))$, where

$$\begin{aligned} x &= 4\cos(\theta) + r\cos(\theta/2) & -1 \le r \le 1 \\ y &= 4\sin(\theta) + r\cos(\theta/2) & 0 \le \theta \le 2\pi \\ z &= r\sin(\theta/2) \end{aligned}$$

and it turns out (check for yourself!) that

$$ec{\mathsf{G}}(-1,0) = ec{\mathsf{G}}(1,2\pi)$$

but

$$ec{\mathsf{N}}(-1,0) = -ec{\mathsf{N}}(1,2\pi).$$

Closed Surfaces

A **closed surface** is the boundary of a solid region (e.g., spheres, ellipsoids, tori). Closed surfaces are always orientable (outward or inward).

Example 2: The parametrization $\vec{G}(\phi, \theta)$ of the unit sphere using spherical coordinates has outward orientation.

$$\begin{split} \vec{\mathsf{G}}(\phi,\,\theta) &= \langle \sin(\phi)\cos(\theta),\,\sin(\phi)\sin(\theta),\,\cos(\phi) \rangle \\ \vec{\mathsf{G}}_{\phi} \times \vec{\mathsf{G}}_{\theta} &= \left\langle \sin^2(\phi)\cos(\theta),\,\sin^2(\phi)\sin(\theta),\,\sin(\phi)\cos(\phi) \right\rangle \\ &= \sin(\phi)\,\vec{\mathsf{G}}(\phi,\theta) \end{split}$$

Vector Surface Integrals

Let ${\cal S}$ be an oriented surface with normal vector $\vec{n},$ and let \vec{F} be a vector field.

The normal component of \vec{F} with respect to S is $\vec{F} \cdot \vec{n}$.

This is a scalar-valued function on ${\cal S}$ that measures the extent to which \vec{F} is flowing through ${\cal S}$ in the direction of $\vec{n}.$

The **vector surface integral** of \vec{F} over S is

$$\iint_{\mathcal{S}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{S}} \vec{\mathsf{F}} \cdot \vec{\mathsf{n}} \, dS.$$

$3\ Vector\ Surface\ Integrals\ and\ Flux$

Joseph Phillip Brennan Jila Niknejad

Vector Surface Integrals

If \vec{F} is a continuous vector field defined on an oriented surface \mathcal{S} with unit normal vector \vec{n} , then the **vector surface integral** of \vec{F} over \mathcal{S} is

$$\iint_{\mathcal{S}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{S}} \vec{\mathsf{F}} \cdot \vec{\mathsf{n}} \, dS$$

The integral is also called the **flux** of \vec{F} across S.

If S has a regular parametrization $\vec{\mathsf{G}}(u,v)$ over \mathcal{R} , then

$$\iint_{S} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{S} \vec{\mathsf{F}} \cdot \vec{\mathsf{n}} \, dS$$
$$= \iint_{\mathcal{R}} \vec{\mathsf{F}} \left(\vec{\mathsf{G}}(u, v) \right) \cdot \frac{\pm \vec{\mathsf{G}}_{u} \times \vec{\mathsf{G}}_{v}}{\|\vec{\mathsf{G}}_{u} \times \vec{\mathsf{G}}_{v}\|} \|\vec{\mathsf{G}}_{u} \times \vec{\mathsf{G}}_{v}\| \, dA$$
$$= \iint_{\mathcal{R}} \vec{\mathsf{F}} \left(\vec{\mathsf{G}}(u, v) \right) \cdot \left(\pm \vec{\mathsf{G}}_{u} \times \vec{\mathsf{G}}_{v} \right) \, dA$$
$$= \iint_{\mathcal{R}} \vec{\mathsf{F}} \left(\vec{\mathsf{G}}(u, v) \right) \cdot \vec{\mathsf{N}} \, dA$$

Vector Surface Integrals: Example

Example 3: Find the flux of $\vec{F}(x, y, z) = \langle 0, yz, z^2 \rangle$ outward through the surface $y^2 + z^2 = 4$, $z \ge 0$ between the planes x = 0 and x = 1.

Example 3 (cont'd): $\vec{F}(x, y, z) = \langle 0, yz, z^2 \rangle$ and $\vec{G}(x, \theta) = \langle x, 2\sin(\theta), 2\cos(\theta) \rangle$ for $(x, \theta) \in [0, 1] \times [-\pi/2, \pi/2]$. $\vec{F} \left(\vec{G}(x, \theta) \right) = \langle 0, 4\sin(\theta)\cos(\theta), 4\cos^2(\theta) \rangle$ $\vec{N} = \langle 0, 2\sin(\theta), 2\cos(\theta) \rangle$

By the formula for vector surface integrals,

$$\iint_{S} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{R}} \vec{\mathsf{F}} \cdot \vec{\mathsf{N}} \, dA$$
$$= 8 \int_{-\pi/2}^{\pi/2} \int_{0}^{1} \underbrace{\sin^{2}(\theta) \cos(\theta) + \cos^{3}(\theta)}_{\cos(\theta)(\sin^{2}(\theta) + \cos^{2}(\theta))} dx \, d\theta$$
$$= 8 \int_{-\pi/2}^{\pi/2} \cos(\theta) \, d\theta = 16.$$

Example 4: Find the flux of the vector field $\vec{F}(x, y, z) = \langle z, y, x \rangle$ across the unit sphere $x^2 + y^2 + z^2 = 1$, oriented outward.

Solution: Parametrize the unit sphere as usual:

$$\vec{\mathsf{G}}(\phi,\theta) = \langle \sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi) \rangle = \vec{\mathsf{n}} \qquad \phi \in [0,\pi], \ \theta \in [0,2\pi]$$
$$\underbrace{\sin(\phi)\vec{\mathsf{n}}}_{\vec{\mathsf{G}}_{\phi} \times \vec{\mathsf{G}}_{\theta}} = \overbrace{\langle \sin^{2}(\phi)\cos(\theta), \sin^{2}(\phi)\sin(\theta), \sin(\phi)\cos(\phi) \rangle}^{\operatorname{sin}(\phi)}$$

$$ec{\mathsf{F}}(ec{\mathsf{G}}(\phi, heta)) = \langle \cos(\phi), \, \sin(\phi) \sin(heta), \, \sin(\phi) \cos(heta)
angle$$

Then compute the vector surface integral: $\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{\mathcal{R}} \vec{F} \cdot (\vec{G}_{\phi} \times \vec{G}_{\theta}) dA$ $= \int_{0}^{\pi} \int_{0}^{2\pi} \left[2\sin^{2}(\phi)\cos(\phi)\cos(\theta) + \sin^{3}(\phi)\sin^{2}(\theta) \right] d\theta d\phi$ $= \int_{0}^{\pi} 2\sin^{2}(\phi)\cos(\phi) d\phi \int_{0}^{2\pi} \cos(\theta) d\theta + \int_{0}^{2\pi} \frac{1 - \cos(2\theta)}{2} d\theta \int_{0}^{\pi} \sin^{3}(\phi) d\phi = \frac{4\pi}{3}$

Fluid Flux

If \vec{F} represents the **velocity** field of a fluid, then the **flow rate** across an oriented surface S is the vector surface integral

$$\iint_{\mathcal{S}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}}.$$

Units = (units of \vec{F}) × (units of $d\vec{S}$) = $\frac{\text{length}}{\text{time}}$ × area = $\frac{\text{volume}}{\text{time}}$.

<u>11</u>

Example: Fluid Flux (Finding the Orientation!)
Example 5: A fluid flows with velocity

$$\vec{F}(x, y, z) = \langle z, y, x \rangle$$
 m/s, where x, y, z are
measured in meters. Find the rate of flow outward
through the cylinder S defined by $x^2 + y^2 = 4$ for
 $0 \le z \le 1$.
Solution: First, parametrize the cylinder: \mathbf{V} video
 $\vec{G}(z, \theta) = \langle 2\cos(\theta), 2\sin(\theta), z \rangle$
 $\vec{G}_z \times \vec{G}_\theta = \langle 0, 0, 1 \rangle \times \langle -2\sin(\theta), 2\cos(\theta), 0 \rangle$
 $= \langle -2\cos(\theta), -2\sin(\theta), 0 \rangle$
 $-2\vec{n}$

Note that G is oriented **inward** from S. To fix this, just flip the sign of \vec{N} .

$$\iint_{S} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{R}} \langle z, 2\sin(\theta), 2\cos(\theta) \rangle \cdot \underbrace{\langle 2\cos(\theta), 2\sin(\theta), 0 \rangle}_{\vec{\mathsf{N}} = 2\vec{\mathsf{n}}} dA$$
$$= \int_{0}^{2\pi} \int_{0}^{1} 2z\cos(\theta) + 4\sin^{2}(\theta) \, dz \, d\theta = 4\pi \, \mathsf{m}^{3}/\mathsf{s}.$$

Example 6: Let S be the surface consisting of the paraboloid $y = x^2 + z^2$, $y \le 1$ and the disk $x^2 + z^2 \le 1$, y = 1, oriented outward. Find the flux of $\vec{F}(x, y, z) = \langle 0, y, -z \rangle$ through S.

<u>Solution</u>: Call the paraboloid \mathcal{P} and the disk \mathcal{Q} . Both can be parametrized over the domain \mathcal{R} given by $0 \le u \le 1$, $0 \le v \le 2\pi$.

Parametrization of \mathcal{P} :

Parametrization of Q:

$$\vec{\mathsf{G}}(u,v) = \langle u\cos(v), u^2, u\sin(v) \rangle \qquad \vec{\mathsf{H}}(u,v) = \langle u\cos(v), 1, u\sin(v) \rangle \\ \vec{\mathsf{G}}_u \times \vec{\mathsf{G}}_v = \langle 2u^2\cos(v), -u, 2u^2\sin(v) \rangle \qquad \vec{\mathsf{H}}_u \times \vec{\mathsf{H}}_v = \langle 0, -u, 0 \rangle$$

An outward normal to S should have negative *y*-coordinate on P and positive *y*-coordinate on Q. Therefore, the normal vectors we want are

$$\vec{\mathsf{N}}_{\mathcal{P}} = \vec{\mathsf{G}}_u \times \vec{\mathsf{G}}_v \qquad \qquad \vec{\mathsf{N}}_{\mathcal{Q}} = -\vec{\mathsf{H}}_u \times \vec{\mathsf{H}}_v$$

Example 6 (continued):

$$\vec{\mathsf{G}}(u,v) = \langle u\cos(v), u^2, u\sin(v) \rangle \quad \vec{\mathsf{F}}(\vec{\mathsf{G}}(u,v)) = \langle 0, u^2, -u\sin(v) \rangle$$

$$\vec{\mathsf{H}}(u,v) = \langle u\cos(v), u^2, u\sin(v) \rangle \quad \vec{\mathsf{F}}(\vec{\mathsf{H}}(u,v)) = \langle 0, 1, -u\sin(v) \rangle$$

Recall that the normal vectors are

 $\vec{\mathsf{N}}_{\mathcal{P}} = \langle 2u^2 \cos(v), -u, 2u^2 \sin(v) \rangle$ $\vec{\mathsf{N}}_{\mathcal{Q}} = \langle 0, u, 0 \rangle$

So the flux is

$$\iint_{S} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{P}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} + \iint_{\mathcal{Q}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}}$$
$$= \iint_{\mathcal{R}} \vec{\mathsf{F}} (\vec{\mathsf{G}}(u, v)) \cdot \vec{\mathsf{N}}_{\mathcal{P}} + \vec{\mathsf{F}} (\vec{\mathsf{H}}(u, v)) \cdot \vec{\mathsf{N}}_{\mathcal{Q}} \, dA$$
$$= \int_{0}^{2\pi} \int_{0}^{1} (-u^{3} - 2u^{3} \sin^{2}(v) + u) \, du \, dv = 0$$

4 Summary, Comparing the Integrals

by Joseph Phillip Brennan Jila Niknejad

Summary: Types of Integrals

Let f be a scalar function and \vec{F} a vector field.

Scalar Line Integral along a curve C parametrized by $\vec{r}(t)$ on [a, b].

$$\int_{\mathcal{C}} f \, ds = \int_{a}^{b} f\left(\vec{r}(t)\right) \, \|\vec{r}'(t)\| \, dt$$

Vector Line Integral along an oriented curve C:

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \int_{a}^{b} \vec{\mathsf{F}}\left(\vec{\mathsf{r}}\left(t\right)\right) \cdot \vec{\mathsf{r}}'(t) dt$$

Scalar Surface Integral over a surface S parametrized by $\vec{G}(u, v)$ on \mathcal{R} :

$$\iint_{\mathcal{S}} f \, dS = \iint_{\mathcal{R}} f\left(\vec{\mathsf{G}}(u,v)\right) \, \|\vec{\mathsf{G}}_u \times \vec{\mathsf{G}}_v\| \, dA$$

Vector Surface Integral over an oriented surface S:

$$\iint_{\mathcal{S}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{R}} \vec{\mathsf{F}} \left(\vec{\mathsf{G}}(u, v) \right) \cdot \left(\pm \vec{\mathsf{G}}_u \times \vec{\mathsf{G}}_v \right) \, dA$$

