## Section 16.5

## Surface Integrals of Vector Fields

Tangent Lines and Planes of Parametrized Surfaces
Oriented Surfaces
Vector Surface Integrals and Flux
Intuition and Formula
Examples, A Cylindrical Surface
Examples, A Spherical Surface
Fluid Flux, Intuition
Examples, A Cylindrical Surface, Finding
Orientation
Examples, Surface of A Paraboloid
Summary, Comparing the Integrals

1 Tangent Lines and Planes of Parametrized Surfaces

## Tangent Planes and Normal Vectors

Let $\mathcal{S}$ be a surface parametrized by $\overrightarrow{\mathrm{G}}(u, v)$. Then $\overrightarrow{\mathrm{G}}_{u}(a, b)$ and $\overrightarrow{\mathrm{G}}_{v}(a, b)$ are tangent to the grid curves, thus span the tangent plane to $\mathcal{S}$ at $P$.


Normal vector: $\overrightarrow{\mathrm{N}}(a, b)= \pm \overrightarrow{\mathrm{G}}_{u}(a, b) \times \overrightarrow{\mathrm{G}}_{v}(a, b)$
Unit normal vector: $\vec{n}(a, b)=\frac{\vec{N}(a, b)}{\|N(a, b)\|}$

- The parametrization $\vec{G}$ is regular if $\vec{n}$ is well-defined ( $\vec{N} \neq \overrightarrow{0}$ always).
- $\vec{n}$ and $-\vec{n}$ are two unit normal vectors; choose the correct orientation.


## Tangent Planes and Normal Vectors

Tangent plane parametrization: $\vec{T}(r, s)=\overrightarrow{\mathrm{G}}(a, b)+r \overrightarrow{\mathrm{G}}_{u}(a, b)+s \overrightarrow{\mathrm{G}}_{v}(a, b)$ Tangent plane equation: $\overrightarrow{\mathrm{N}} \cdot((x, y, z)-P)=0$
Example 1: Find a parametrized equation and a Cartesian equation for the tangent plane to the helicoid $\overrightarrow{\mathrm{G}}(u, v)=\langle u \cos (v), u \sin (v), v\rangle$ at $\overrightarrow{\mathrm{G}}(1,0)=\langle 1,0,0\rangle$.

Solution:

$$
\text { n: } \left.\begin{array}{rlrl}
\overrightarrow{\mathrm{G}}_{u} & =\langle\cos (v), \sin (v), 0\rangle & \overrightarrow{\mathrm{G}}_{u}(1,0) & =\langle 1,0,0\rangle \\
\overrightarrow{\mathrm{G}}_{v} & =\langle-u \sin (v), u \cos (v), 1\rangle & \overrightarrow{\mathrm{G}}_{v}(1,0) & =\langle 0,1,1\rangle \\
\overrightarrow{\mathrm{N}}=\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v} & =\langle\sin (v),-\cos (v), u\rangle & & \overrightarrow{\mathrm{N}}(1,0)
\end{array}=\langle 0,-1,1\rangle\right)
$$

Tangent plane parametrization:

$$
\vec{T}(r, s)=(1,0,0)+r\langle 1,0,0\rangle+s\langle 0,1,1\rangle=\langle 1+r, s, s\rangle
$$

Tangent plane intrinsic equation:

$$
\langle 0,-1,1\rangle \cdot((x, y, z)-(1,0,0))=0 \quad \text { or } \quad-y+z=0
$$

2 Oriented Surfaces

## Flux and Orientation: Intuition

- Given a surface $\mathcal{S}$ and a vector field $\overrightarrow{\mathrm{F}}$, we want to measure the flux (net flow of "stuff") of $\vec{F}$ through $\mathcal{S}$.
- In order for this to make sense, we need to specify which way stuff is flowing through $\mathcal{S}$.
- In other words, we need to choose one side of $\mathcal{S}$ as the "from" side and one side as the "to" side.
- In other words, we need an orientation for $\mathcal{S}$.
- In order to orient $\mathcal{S}$ at a particular point, choose one of the two unit normal vectors (which we think of as pointing from the "from" side to the "to" side).
- In order to measure flux through $\mathcal{S}$, we need this choice of $\vec{n}$ to be consistent for all points!


## Precise Definition of Orientation

If it is possible to choose a unit normal vector $\vec{n}$ at every point so that $\vec{n}$ varies continuously over a surface $\mathcal{S}$, then $\mathcal{S}$ is called an orientable surface and the choice of $\vec{n}$ gives an orientation for $\mathcal{S}$.


Any regular parametrization $\overrightarrow{\mathrm{G}}(u, v)$ of an orientable surface automatically provides an orientation:

$$
\overrightarrow{\mathrm{n}}=\frac{ \pm \overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}}{\left\|\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right\|}
$$

Not all surfaces can be oriented! The Möbius strip is a surface which has only one side, and is thus not orientable.

If an ant were to crawl along the Möbius strip starting at a point $P$, it would be upside down when it got back to $P$.


The Möbius strip can be parametrized as $\overrightarrow{\mathrm{G}}(r, \theta)=(x(r, \theta), y(r, \theta), z(r, \theta))$, where

$$
\begin{array}{ll}
x=4 \cos (\theta)+r \cos (\theta / 2) & -1 \leq r \leq 1 \\
y=4 \sin (\theta)+r \cos (\theta / 2) & 0 \leq \theta \leq 2 \pi \\
z=r \sin (\theta / 2) &
\end{array}
$$

and it turns out (check for yourself!) that

$$
\overrightarrow{\mathrm{G}}(-1,0)=\overrightarrow{\mathrm{G}}(1,2 \pi)
$$

but

$$
\vec{N}(-1,0)=-\vec{N}(1,2 \pi)
$$

## Closed Surfaces

A closed surface is the boundary of a solid region (e.g., spheres, ellipsoids, tori). Closed surfaces are always orientable (outward or inward).


Outward Orientation


Inward Orientation

Example 2: The parametrization $\overrightarrow{\mathrm{G}}(\phi, \theta)$ of the unit sphere using spherical coordinates has outward orientation.

$$
\begin{aligned}
\overrightarrow{\mathrm{G}}(\phi, \theta) & =\langle\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi)\rangle \\
\overrightarrow{\mathrm{G}}_{\phi} \times \overrightarrow{\mathrm{G}}_{\theta} & =\left\langle\sin ^{2}(\phi) \cos (\theta), \sin ^{2}(\phi) \sin (\theta), \sin (\phi) \cos (\phi)\right\rangle \\
& =\sin (\phi) \overrightarrow{\mathrm{G}}(\phi, \theta)
\end{aligned}
$$

## Vector Surface Integrals

Let $\mathcal{S}$ be an oriented surface with normal vector $\vec{n}$, and let $\overrightarrow{\mathrm{F}}$ be a vector field.

The normal component of $\vec{F}$ with respect to $\mathcal{S}$ is $\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}}$.

This is a scalar-valued function on $\mathcal{S}$ that measures the extent to which $\vec{F}$ is flowing through $\mathcal{S}$ in the direction of $\vec{n}$.


The vector surface integral of $\overrightarrow{\mathrm{F}}$ over $\mathcal{S}$ is

$$
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}} d S
$$

3 Vector Surface Integrals and Flux

## Vector Surface Integrals

If $\overrightarrow{\mathrm{F}}$ is a continuous vector field defined on an oriented surface $\mathcal{S}$ with unit normal vector $\overrightarrow{\mathrm{n}}$, then the vector surface integral of $\overrightarrow{\mathrm{F}}$ over $\mathcal{S}$ is

$$
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}} d S
$$

The integral is also called the flux of $\vec{F}$ across $\mathcal{S}$.
If $\mathcal{S}$ has a regular parametrization $\overrightarrow{\mathrm{G}}(u, v)$ over $\mathcal{R}$, then

$$
\begin{aligned}
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} & =\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}} d S \\
& =\iint_{\mathcal{R}} \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{G}}(u, v)) \cdot \frac{ \pm \overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}}{\left\|\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right\|}\left\|\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right\| d A \\
& =\iint_{\mathcal{R}} \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{G}}(u, v)) \cdot\left( \pm \overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right) d A \\
& =\iint_{\mathcal{R}} \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{G}}(u, v)) \cdot \overrightarrow{\mathrm{N}} d A
\end{aligned}
$$

## Vector Surface Integrals: Example

Example 3: Find the flux of $\vec{F}(x, y, z)=\left\langle 0, y z, z^{2}\right\rangle$ outward through the surface $y^{2}+z^{2}=4, z \geq 0$ between the planes $x=0$ and $x=1$.

Solution: The surface $\mathcal{S}$ is a half-cylinder, parametrized as

$$
\overrightarrow{\mathrm{G}}(x, \theta)=\langle x, 2 \sin (\theta), 2 \cos (\theta)\rangle
$$

for $x \in[0,1], \theta \in[-\pi / 2, \pi / 2]$.


$$
\overrightarrow{\mathrm{N}}=\overrightarrow{\mathrm{G}}_{x} \times \overrightarrow{\mathrm{G}}_{\theta}=\langle 1,0,0\rangle \times\langle 0,2 \cos (\theta),-2 \sin (\theta)\rangle=\overbrace{\langle 0,2 \sin (\theta), 2 \cos (\theta)\rangle}^{2 \vec{n}}
$$

Important Note: The orientation is outward (as intended), since $\vec{N}_{z}=2 \cos (\theta) \geq 0$ for $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Example 3 (cont'd): $\vec{F}(x, y, z)=\left\langle 0, y z, z^{2}\right\rangle$ and
$\overrightarrow{\mathrm{G}}(x, \theta)=\langle x, 2 \sin (\theta), 2 \cos (\theta)\rangle$ for $(x, \theta) \in[0,1] \times[-\pi / 2, \pi / 2]$.

$$
\begin{aligned}
\overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{G}}(x, \theta)) & =\left\langle 0,4 \sin (\theta) \cos (\theta), 4 \cos ^{2}(\theta)\right\rangle \\
\vec{N} & =\langle 0,2 \sin (\theta), 2 \cos (\theta)\rangle
\end{aligned}
$$

By the formula for vector surface integrals,

$$
\begin{aligned}
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} & =\iint_{\mathcal{R}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{~N}} d A \\
& =8 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{1} \underbrace{\sin ^{2}(\theta) \cos (\theta)+\cos ^{3}(\theta)}_{\cos (\theta)\left(\sin ^{2}(\theta)+\cos ^{2}(\theta)\right)} d x d \theta \\
& =8 \int_{-\pi / 2}^{\pi / 2} \cos (\theta) d \theta=16
\end{aligned}
$$

Example 4: Find the flux of the vector field $\overrightarrow{\mathrm{F}}(x, y, z)=\langle z, y, x\rangle$ across the unit sphere $x^{2}+y^{2}+z^{2}=1$, oriented outward.

, Video

Solution: Parametrize the unit sphere as usual:

$$
\begin{aligned}
\overrightarrow{\mathrm{G}}(\phi, \theta) & =\langle\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi)\rangle=\overrightarrow{\mathrm{n}} \quad \phi \in[0, \pi], \theta \in[0,2 \pi] \\
\overrightarrow{\mathrm{G}}_{\phi} \times \overrightarrow{\mathrm{G}}_{\theta} & =\overbrace{\left\langle\sin ^{2}(\phi) \cos (\theta), \sin ^{2}(\phi) \sin (\theta), \sin (\phi) \cos (\phi)\right\rangle}^{\sin (\phi) \vec{n}} \\
\overrightarrow{\mathrm{~F}}(\overrightarrow{\mathrm{G}}(\phi, \theta)) & =\langle\cos (\phi), \sin (\phi) \sin (\theta), \sin (\phi) \cos (\theta)\rangle
\end{aligned}
$$

Then compute the vector surface integral:

$$
\begin{aligned}
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} & =\iint_{\mathcal{R}} \overrightarrow{\mathrm{F}} \cdot\left(\overrightarrow{\mathrm{G}}_{\phi} \times \overrightarrow{\mathrm{G}}_{\theta}\right) d A \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left[2 \sin ^{2}(\phi) \cos (\phi) \cos (\theta)+\sin ^{3}(\phi) \sin ^{2}(\theta)\right] d \theta d \phi \\
& =\int_{0}^{\pi} 2 \sin ^{2}(\phi) \cos (\phi) d \phi \int_{0}^{2 \pi} \cos (\theta) d \theta+\int_{0}^{2 \pi} \frac{1-\cos (2 \theta)}{2} d \theta \int_{0}^{\pi} \sin ^{3}(\phi) d \phi=\frac{4 \pi}{3}
\end{aligned}
$$

## Fluid Flux

If $\vec{F}$ represents the velocity field of a fluid, then the flow rate across an oriented surface $\mathcal{S}$ is the vector surface integral

$$
\begin{gathered}
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} . \\
\text { Units }=(\text { units of } \overrightarrow{\mathrm{F}}) \times(\text { units of } d \overrightarrow{\mathrm{~S}})=\frac{\text { length }}{\text { time }} \times \text { area }=\frac{\text { volume }}{\text { time }} .
\end{gathered}
$$



## Example: Fluid Flux (Finding the Orientation!) <br> Example 5: A fluid flows with velocity

 $\vec{F}(x, y, z)=\langle z, y, x\rangle \mathrm{m} / \mathrm{s}$, where $x, y, z$ are measured in meters. Find the rate of flow outward through the cylinder $\mathcal{S}$ defined by $x^{2}+y^{2}=4$ for $0 \leq z \leq 1$.

Solution: First, parametrize the cylinder: Video

$$
\begin{array}{rlr}
\overrightarrow{\mathrm{G}}(z, \theta) & =\langle 2 \cos (\theta), 2 \sin (\theta), z\rangle & \mathcal{R}: \theta \in[0,2 \pi], z \in[0,1] \\
\overrightarrow{\mathrm{G}}_{z} \times \overrightarrow{\mathrm{G}}_{\theta} & =\langle 0,0,1\rangle \times\langle-2 \sin (\theta), 2 \cos (\theta), 0\rangle \\
& =\underbrace{\langle-2 \cos (\theta),-2 \sin (\theta), 0\rangle}_{-2 \overrightarrow{\mathrm{n}}} &
\end{array}
$$

Note that $G$ is oriented inward from $\mathcal{S}$. To fix this, just flip the sign of $\vec{N}$.

$$
\begin{aligned}
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} & =\iint_{\mathcal{R}}\langle z, 2 \sin (\theta), 2 \cos (\theta)\rangle \cdot \underbrace{\langle 2 \cos (\theta), 2 \sin (\theta), 0\rangle}_{\overrightarrow{\mathrm{N}}=2 \overrightarrow{\mathrm{n}}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 2 z \cos (\theta)+4 \sin ^{2}(\theta) d z d \theta=4 \pi \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Example 6: Let $\mathcal{S}$ be the surface consisting of the paraboloid $y=x^{2}+z^{2}, y \leq 1$ and the disk $x^{2}+z^{2} \leq 1, y=1$, oriented outward. Find the flux of
$\vec{F}(x, y, z)=\langle 0, y,-z\rangle$ through $\mathcal{S}$.


Solution: Call the paraboloid $\mathcal{P}$ and the disk $\mathcal{Q}$. Both can be parametrized over the domain $\mathcal{R}$ given by $0 \leq u \leq 1,0 \leq v \leq 2 \pi$.

Parametrization of $\mathcal{P}$ :

$$
\overrightarrow{\mathrm{G}}(u, v)=\left\langle u \cos (v), u^{2}, u \sin (v)\right\rangle
$$

$\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}=\left\langle 2 u^{2} \cos (v),-u, 2 u^{2} \sin (v)\right\rangle$

An outward normal to $\mathcal{S}$ should have negative $y$-coordinate on $\mathcal{P}$ and positive $y$-coordinate on $\mathcal{Q}$. Therefore, the normal vectors we want are

$$
\overrightarrow{\mathrm{N}}_{\mathcal{P}}=\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v} \quad \overrightarrow{\mathrm{~N}}_{\mathcal{Q}}=-\overrightarrow{\mathrm{H}}_{u} \times \overrightarrow{\mathrm{H}}_{v}
$$

## Example 6 (continued):

$$
\begin{array}{ll}
\overrightarrow{\mathrm{G}}(u, v)=\left\langle u \cos (v), u^{2}, u \sin (v)\right\rangle & \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{G}}(u, v))=\left\langle 0, u^{2},-u \sin (v)\right\rangle \\
\overrightarrow{\mathrm{H}}(u, v)=\left\langle u \cos (v), u^{2}, u \sin (v)\right\rangle & \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{H}}(u, v))=\langle 0,1,-u \sin (v)\rangle
\end{array}
$$

Recall that the normal vectors are

$$
\overrightarrow{\mathrm{N}}_{\mathcal{P}}=\left\langle 2 u^{2} \cos (v),-u, 2 u^{2} \sin (v)\right\rangle \quad \overrightarrow{\mathrm{N}}_{\mathcal{Q}}=\langle 0, u, 0\rangle
$$

So the flux is

$$
\begin{aligned}
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} & =\iint_{\mathcal{P}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}+\iint_{\mathcal{Q}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} \\
& =\iint_{\mathcal{R}} \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{G}}(u, v)) \cdot \overrightarrow{\mathrm{N}}_{\mathcal{P}}+\overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{H}}(u, v)) \cdot \overrightarrow{\mathrm{N}}_{\mathcal{Q}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(-u^{3}-2 u^{3} \sin ^{2}(v)+u\right) d u d v=0
\end{aligned}
$$

4 Summary, Comparing the Integrals

## Summary: Types of Integrals

Let $f$ be a scalar function and $\overrightarrow{\mathrm{F}}$ a vector field.
Scalar Line Integral along a curve $\mathcal{C}$ parametrized by $\vec{r}(t)$ on $[a, b]$.

$$
\int_{\mathcal{C}} f d s=\int_{a}^{b} f(\vec{r}(t))\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\| d t
$$

Vector Line Integral along an oriented curve $\mathcal{C}$ :

$$
\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t
$$

Scalar Surface Integral over a surface $\mathcal{S}$ parametrized by $\overrightarrow{\mathrm{G}}(u, v)$ on $\mathcal{R}$ :

$$
\iint_{\mathcal{S}} f d S=\iint_{\mathcal{R}} f(\overrightarrow{\mathrm{G}}(u, v))\left\|\overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right\| d A
$$

Vector Surface Integral over an oriented surface $\mathcal{S}$ :

$$
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iint_{\mathcal{R}} \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{G}}(u, v)) \cdot\left( \pm \overrightarrow{\mathrm{G}}_{u} \times \overrightarrow{\mathrm{G}}_{v}\right) d A
$$

