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1 Tangent Lines and Planes of Parametrized
Surfaces



Tangent Planes and Normal Vectors
Let S be a surface parametrized by G⃗(u, v). Then G⃗u(a, b) and G⃗v (a, b)
are tangent to the grid curves, thus span the tangent plane to S at P.
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Curve G⃗(u, b)
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Normal vector: N⃗(a, b) = ±G⃗u(a, b)× G⃗v (a, b)

Unit normal vector: n⃗(a, b) = N⃗(a,b)

∥N⃗(a,b)∥

The parametrization G⃗ is regular if n⃗ is well-defined (N⃗ ̸= 0⃗ always).
n⃗ and −n⃗ are two unit normal vectors; choose the correct orientation.



Tangent Planes and Normal Vectors
Tangent plane parametrization: T⃗ (r , s) = G⃗(a, b) + r G⃗u(a, b) + sG⃗v (a, b)

Tangent plane equation: N⃗ · ((x , y , z)− P) = 0

Example 1: Find a parametrized equation and a Cartesian equation for
the tangent plane to the helicoid G⃗(u, v) = ⟨u cos(v), u sin(v), v⟩ at
G⃗(1, 0) = ⟨1, 0, 0⟩.

Solution: G⃗u = ⟨cos(v), sin(v), 0⟩ G⃗u(1, 0) = ⟨1, 0, 0⟩

G⃗v = ⟨−u sin(v), u cos(v), 1⟩ G⃗v (1, 0) = ⟨0, 1, 1⟩

N⃗ = G⃗u × G⃗v = ⟨sin(v), − cos(v), u⟩ N⃗(1, 0) = ⟨0, −1, 1⟩

Tangent plane parametrization:

T⃗ (r , s) = (1, 0, 0) + r⟨1, 0, 0⟩+ s⟨0, 1, 1⟩ = ⟨1 + r , s, s⟩

Tangent plane intrinsic equation:

⟨0, −1, 1⟩ · ((x , y , z)− (1, 0, 0)) = 0 or − y + z = 0



2 Oriented Surfaces



Flux and Orientation: Intuition

Given a surface S and a vector field F⃗, we want to measure the flux
(net flow of “stuff”) of F⃗ through S.

In order for this to make sense, we need to specify which way stuff
is flowing through S.

In other words, we need to choose one side of S as the “from” side
and one side as the “to” side.

In other words, we need an orientation for S.

In order to orient S at a particular point, choose one of the two unit
normal vectors (which we think of as pointing from the “from” side
to the “to” side).

In order to measure flux through S, we need this choice of n⃗ to be
consistent for all points!



Precise Definition of Orientation
If it is possible to choose a unit normal vector n⃗ at every point so that n⃗
varies continuously over a surface S, then S is called an orientable
surface and the choice of n⃗ gives an orientation for S.

Any regular parametrization G⃗(u, v) of an orientable surface
automatically provides an orientation:

n⃗ =
±G⃗u × G⃗v

∥G⃗u × G⃗v∥



Not all surfaces can be oriented! The Möbius strip is a surface which
has only one side, and is thus not orientable.

If an ant were to crawl along the Möbius strip starting at a point P, it
would be upside down when it got back to P.

The Möbius strip can be parametrized as
G⃗(r , θ) = (x(r , θ), y(r , θ), z(r , θ)), where

x = 4 cos(θ) + r cos(θ/2) −1 ≤ r ≤ 1
y = 4 sin(θ) + r cos(θ/2) 0 ≤ θ ≤ 2π
z = r sin(θ/2)

and it turns out (check for yourself!) that

G⃗(−1, 0) = G⃗(1, 2π)

but
N⃗(−1, 0) = −N⃗(1, 2π).



Closed Surfaces
A closed surface is the boundary of a solid region (e.g., spheres,
ellipsoids, tori). Closed surfaces are always orientable (outward or
inward).

Inward OrientationOutward Orientation

Example 2: The parametrization G⃗(ϕ, θ) of the unit sphere using
spherical coordinates has outward orientation.

G⃗(ϕ, θ) = ⟨sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)⟩

G⃗ϕ × G⃗θ =
〈
sin2(ϕ) cos(θ), sin2(ϕ) sin(θ), sin(ϕ) cos(ϕ)

〉
= sin(ϕ) G⃗(ϕ, θ)



Vector Surface Integrals

Let S be an oriented surface with
normal vector n⃗, and let F⃗ be a
vector field.

The normal component of F⃗ with
respect to S is F⃗ · n⃗.

This is a scalar-valued function on S
that measures the extent to which F⃗
is flowing through S in the direction
of n⃗.
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The vector surface integral of F⃗ over S is
¨

S
F⃗ · d S⃗ =

¨
S

F⃗ · n⃗ dS .



3 Vector Surface Integrals and Flux



Vector Surface Integrals
If F⃗ is a continuous vector field defined on an oriented surface S with
unit normal vector n⃗, then the vector surface integral of F⃗ over S is

¨
S

F⃗ · d S⃗ =

¨
S

F⃗ · n⃗ dS

The integral is also called the flux of F⃗ across S.

If S has a regular parametrization G⃗(u, v) over R, then
¨

S
F⃗ · d S⃗ =

¨
S

F⃗ · n⃗ dS

=

¨
R

F⃗
(
G⃗(u, v)

)
· ±G⃗u × G⃗v

∥G⃗u × G⃗v∥
∥G⃗u × G⃗v∥ dA

=

¨
R

F⃗
(
G⃗(u, v)

)
· (±G⃗u × G⃗v ) dA

=

¨
R

F⃗
(
G⃗(u, v)

)
· N⃗ dA



Vector Surface Integrals: Example

Example 3: Find the flux of F⃗(x , y , z) =
〈
0, yz , z2

〉
outward through the

surface y2 + z2 = 4, z ≥ 0 between the planes x = 0 and x = 1.

Solution: The surface S is a
half-cylinder, parametrized as

G⃗(x , θ) = ⟨x , 2 sin(θ), 2 cos(θ)⟩

for x ∈ [0, 1], θ ∈ [−π/2, π/2].
x
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N⃗ = G⃗x × G⃗θ = ⟨1, 0, 0⟩×⟨0, 2 cos(θ), −2 sin(θ)⟩ =
2⃗n︷ ︸︸ ︷

⟨0, 2 sin(θ), 2 cos(θ)⟩

Important Note: The orientation is outward (as intended), since
N⃗z = 2 cos(θ) ≥ 0 for θ ∈

[
−π

2
,
π

2

]
.



Example 3 (cont’d): F⃗(x , y , z) =
〈
0, yz , z2

〉
and

G⃗(x , θ) = ⟨x , 2 sin(θ), 2 cos(θ)⟩ for (x , θ) ∈ [0, 1]× [−π/2, π/2].

F⃗
(
G⃗(x , θ)

)
=

〈
0, 4 sin(θ) cos(θ), 4 cos2(θ)

〉
N⃗ = ⟨0, 2 sin(θ), 2 cos(θ)⟩

By the formula for vector surface integrals,
¨

S
F⃗ · d S⃗ =

¨
R

F⃗ · N⃗ dA

= 8
ˆ π/2

−π/2

ˆ 1

0
sin2(θ) cos(θ) + cos3(θ)︸ ︷︷ ︸

cos(θ)(sin2(θ)+cos2(θ))

dx dθ

= 8
ˆ π/2

−π/2
cos(θ) dθ = 16.

Video

https://mediahub.ku.edu/media/t/1_hxybrz31


Example 4: Find the flux of the vector field
F⃗(x , y , z) = ⟨z , y , x⟩ across the unit sphere
x2 + y2 + z2 = 1, oriented outward.
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Solution: Parametrize the unit sphere as usual:

G⃗(ϕ, θ) = ⟨sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)⟩ = n⃗ ϕ ∈ [0, π], θ ∈ [0, 2π]

G⃗ϕ × G⃗θ =

sin(ϕ)⃗n︷ ︸︸ ︷〈
sin2(ϕ) cos(θ), sin2(ϕ) sin(θ), sin(ϕ) cos(ϕ)

〉
F⃗(G⃗(ϕ, θ)) = ⟨cos(ϕ), sin(ϕ) sin(θ), sin(ϕ) cos(θ)⟩

Then compute the vector surface integral:¨
S

F⃗ · d S⃗ =

¨
R

F⃗ ·
(
G⃗ϕ × G⃗θ

)
dA

=

ˆ π

0

ˆ 2π

0

[
2 sin2(ϕ) cos(ϕ) cos(θ) + sin3(ϕ) sin2(θ)

]
dθ dϕ

=

ˆ π

0
2 sin2(ϕ) cos(ϕ) dϕ

�
���

��*0ˆ 2π

0
cos(θ)dθ +

���������:πˆ 2π

0

1 − cos(2θ)
2

dθ

ˆ π

0
sin3(ϕ) dϕ =

4π
3

https://mediahub.ku.edu/media/t/1_913ks954


Fluid Flux

If F⃗ represents the velocity field of a fluid, then the flow rate across an
oriented surface S is the vector surface integral

¨
S

F⃗ · d S⃗.

Units = (units of F⃗) × (units of d S⃗) =
length
time

× area =
volume
time

.

v⃗0
Surface S of area A

viewed from side. v⃗0

Surface S of area A.

N⃗: Normal vector

N⃗: of length A.

θ

θ



Example: Fluid Flux (Finding the Orientation!)
Example 5: A fluid flows with velocity
F⃗(x , y , z) = ⟨z , y , x⟩ m/s, where x , y , z are
measured in meters. Find the rate of flow outward
through the cylinder S defined by x2 + y2 = 4 for
0 ≤ z ≤ 1.

x y

z

Solution: First, parametrize the cylinder: Video

G⃗(z , θ) = ⟨2 cos(θ), 2 sin(θ), z⟩ R : θ ∈ [0, 2π], z ∈ [0, 1]

G⃗z × G⃗θ = ⟨0, 0, 1⟩ × ⟨−2 sin(θ), 2 cos(θ), 0⟩
= ⟨−2 cos(θ), −2 sin(θ), 0⟩︸ ︷︷ ︸

−2⃗n

Note that G is oriented inward from S. To fix this, just flip the sign of N⃗.
¨

S
F⃗ · d S⃗ =

¨
R
⟨z , 2 sin(θ), 2 cos(θ)⟩ · ⟨2 cos(θ), 2 sin(θ), 0⟩︸ ︷︷ ︸

N⃗=2⃗n

dA

=

ˆ 2π

0

ˆ 1

0
2z cos(θ) + 4 sin2(θ) dz dθ = 4π m3/s.

https://mediahub.ku.edu/media/t/1_f8cmrm0a


Example 6: Let S be the surface consisting
of the paraboloid y = x2 + z2, y ≤ 1 and
the disk x2 + z2 ≤ 1, y = 1, oriented
outward. Find the flux of
F⃗(x , y , z) = ⟨0, y ,−z⟩ through S.
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Solution: Call the paraboloid P and the disk Q. Both can be
parametrized over the domain R given by 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

Parametrization of P:

G⃗(u, v) =
〈
u cos(v), u2, u sin(v)

〉
G⃗u × G⃗v =

〈
2u2 cos(v), −u, 2u2 sin(v)

〉
Parametrization of Q:

H⃗(u, v) = ⟨u cos(v), 1, u sin(v)⟩

H⃗u × H⃗v = ⟨0, −u, 0⟩

An outward normal to S should have negative y -coordinate on P and
positive y -coordinate on Q. Therefore, the normal vectors we want are

N⃗P = G⃗u × G⃗v N⃗Q = −H⃗u × H⃗v



Example 6 (continued):

G⃗(u, v) =
〈
u cos(v), u2, u sin(v)

〉
F⃗(G⃗(u, v)) =

〈
0, u2, −u sin(v)

〉
H⃗(u, v) =

〈
u cos(v), u2, u sin(v)

〉
F⃗(H⃗(u, v)) = ⟨0, 1,−u sin(v)⟩

Recall that the normal vectors are

N⃗P =
〈
2u2 cos(v), −u, 2u2 sin(v)

〉
N⃗Q = ⟨0, u, 0⟩

So the flux is¨
S

F⃗ · d S⃗ =

¨
P

F⃗ · d S⃗ +

¨
Q

F⃗ · d S⃗

=

¨
R

F⃗(G⃗(u, v)) · N⃗P + F⃗(H⃗(u, v)) · N⃗Q dA

=

ˆ 2π

0

ˆ 1

0
(−u3 − 2u3 sin2(v) + u) du dv = 0



4 Summary, Comparing the Integrals



Summary: Types of Integrals
Let f be a scalar function and F⃗ a vector field.

Scalar Line Integral along a curve C parametrized by r⃗ (t) on [a, b].
ˆ
C
f ds =

ˆ b

a

f (⃗r (t)) ∥⃗r ′(t)∥ dt

Vector Line Integral along an oriented curve C:
ˆ
C

F⃗ · d r⃗ =
ˆ b

a

F⃗ (⃗r (t)) · r⃗ ′(t) dt

Scalar Surface Integral over a surface S parametrized by G⃗(u, v) on R:
¨

S
f dS =

¨
R
f
(
G⃗(u, v)

)
∥G⃗u × G⃗v∥ dA

Vector Surface Integral over an oriented surface S:
¨

S
F⃗ · d S⃗ =

¨
R

F⃗
(
G⃗(u, v)

)
·
(
±G⃗u × G⃗v

)
dA

Summary Video

https://mediahub.ku.edu/media/t/1_rr2w9bna
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